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1. Introduction

The supersymmetric extremal black hole attractors found in [1 – 4] (for a nice review see [5])

about ten years ago are still a subject of intensive research.

Another recent development, seemingly unrelated to black hole attractors, which at-

tracts a lot of attention is flux compactification [6 – 8]. This development is reviewed nicely

in [9] and [10] (see adequate bibliography here as well).

In this note we will address both black hole attractors and flux compactifications.

Equations in both cases are pretty similar but the relation was unclear until recently,

when the New Attractors were introduced in papers [11] and [12] (using [13]). These

equations describe an analog of the supersymmetric extremal black hole attractor equations

for supersymmetric flux vacua (and actually for non-supersymmetric ones too).

Here we choose a particular Calabi-Yau model (a hypersurface in WP 4
1,1,1,1,2) and show

that the known examples of supersymmetric flux vacua (both Minkowski and AdS) of IIB

string theory satisfy the New Attractor equations. Explicit examples of supersymmetric
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flux vacua on Calabi-Yau three-folds were given in [14 – 17] (see [10] for complete bibliog-

raphy). The particular classes of vacua checked here are at the mirror of Landau-Ginzburg

point (to which we refer just as LG point later on) and in vicinity of the conifold point of

the model, which are both in a finite region on the moduli space.

One observation of this note is the existence of area codes. This notion for black

holes was introduced in [18]: for certain charges moduli space can be divided in ”basins

of attraction”. Black hole horizon and black hole entropy become function of not only

charges but also of basin on moduli space (”area”). Certain fluxes give rise to multiple

vacua on moduli space and ”area” of attraction may exist. Examples are given of such

phenomena where, for fixed F(3) and H(3) flux, one supersymmetric flux vacuum is at the

Landau-Ginzburg point while other is very close to the conifold. The values of the AdS

cosmological constants in this case are close, but not the same. This suggests the existence

of domain walls in the landscape (for further details see [19]).

Other observations we make have to do with the non-supersymmetric extremal black

holes in IIB string theory introduced in [20]. Interesting recent developments on this subject

appear in [21 – 23]. In [12] New Attractor equations for these non-supersymmetric black

holes were proposed.

We give explicit examples of non-supersymmetric extremal black holes attractors and

it is checked that the New Attractor equations for non-supersymmetric black holes work

for them.

2. Review of new attractors for flux vacua

In papers [11, 12] the New Attractor equations for flux vacua were proposed. The following

attractor equations for N = 1 supersymetric flux vacua of IIB string theory were found:

(

h

f

)

=

(

2Re(ZΠ)

2Re(ZτΠ)

)

+

(

2Re(Z0IDIΠ)

2Re(τZ0IDIΠ)

)

(2.1)

where τ is the axio-dilaton; f and h are the magnetic and electric charges associated with

the RR 3-form flux F(3) and NSNS 3-form flux H(3) of IIB respectively. Here Σ is the

symplectic matrix Σ ≡
(

0 1

−1 0

)

.

Π is the covariantly holomorphic section of flat symplectic bundle of dimension 2h2,1+2

over the Kähler manifold which obeys the symplectic constraint

Π† · Σ · Π = i (2.2)

The superpotential is defined to be

Z = (f − τh) · Σ · Π (2.3)

while the mass matrix components are

Z0I = D0DIZ (2.4)
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with the flat derivatives are defined as DI = eI
i D

i for the symplectic bundle and D0 = e
0
τDτ

for the axio-dilaton. Here we use orthonormal frame eI
i and e

0
τ such that eI

i g
ij̄eJ̄

j̄
= δIJ̄ and

e
0
τgτ τ̄e

0
τ̄ = δ00 holds (where gij̄ is the metric on complex structure moduli space and gτ τ̄ is

the metric on axio-dilaton moduli space).

3. Review of supersymmetric flux vacua

As the properties of flux superpotentials on Calabi-Yau orientifolds in type IIB string

theory have been reviewed many times, we will be brief. Our conventions are those of [15].

Consider a Calabi-Yau threefold M with h2,1 complex structure deformations. Choose

a symplectic basis {Aa, Bb} for the b3 = 2h2,1 + 2 three-cycles, a, b = 1, . . . , h2,1 + 1, with

dual cohomology elements αa, βb such that:
∫

Aa

αb = δa
b ,

∫

Bb

βa = −δa
b ,

∫

M
αa ∧ βb = δb

a. (3.1)

Fixing a normalization for the unique holomorphic three-form Ω, let us assemble the periods

za ≡
∫

Aa Ω, Gb ≡
∫

Bb
Ω into a b3-vector Π(z) ≡ (Gb, z

a). The za are taken as projective

coordinates on the complex structure moduli space, with Gb = ∂bG(z). The Kähler potential

K for the za as well as the axio-dilaton τ ≡ C0 + ie−ϕ is

K = − log(i

∫

M
Ω ∧ Ω) − log(−i(τ − τ̄)) = − log(−iΠ† · Σ · Π) − log(−i(τ − τ̄)) , (3.2)

where Σ is the symplectic matrix. The axio-dilaton and complex structure moduli take

values in the moduli space M; a correct global description of the moduli space requires to

identify points in M related by modular symmetries.

Now consider nonzero fluxes of the RR and NSNS 3-form field strengths F(3) and H(3)

over these three cycles, defining the integer-valued b3-vectors f and h via

F(3) = −(2π)2α′(fa αa + fa+h2,1+1 βa) , H(3) = −(2π)2α′(ha αa + ha+h2,1+1 βa) . (3.3)

These fluxes induce a superpotential for the complex structure moduli as well as the axio-

dilaton:

W =

∫

M
G(3) ∧ Ω(z) = (2π)2α′ (f − τh) · Π(z) , (3.4)

where G(3) ≡ F(3) − τH(3).

We will be interested exclusively in vacua satisfying the F-flatness conditions:

DτW = DaW = 0 , (3.5)

where DaW ≡ ∂aW + W∂aK, and we have allowed a to run only over the h2,1 inhomoge-

neous coordinates. This is alternatively

(f − τ̄h) · Π(z) = (f − τh) · (∂aΠ + Π∂aK) = 0 . (3.6)

These conditions force the complex structure to align such that the (3, 0) and (1, 2) parts

of the fluxes vanish, leaving the fluxes “imaginary self-dual,” ∗6G(3) = iG(3).
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The fluxes also induce a contribution to the total D3-brane charge

Nflux =
1

(2π)4(α′)2

∫

M
F(3) ∧ H(3) = f · Σ · h . (3.7)

In the rest of the paper, we will set (2π)2α′ = 1 for convenience. For vacua satisfy-

ing (3.5), the physical dilaton condition Im τ > 0 implies that Nflux > 0. As the total

charge on a compact manifold must vanish, sources of negative D3-charge must be present

as well. For a given IIB orientifold compactification, a fixed amount of negative charge is

induced by the orientifolds, leading to an effective bound on Nflux:

Nflux ≤ L , (3.8)

where, for instance in a IIB orientifold arising as a limit of a fourfold compactification

of F-theory, L can be computed from the Euler character of the fourfold. Although the

number of imaginary-self dual flux vacua is infinite, the set satisfying (3.8) for fixed L is

in general finite.

In the absence of fluxes, a symmetry group G = SL(2, Z)τ × Γ acts on the moduli

space M, where SL(2, Z)τ is the S-duality of type IIB string theory and Γ is the modular

group of the complex structure moduli space. Points on M related by G are considered

equivalent, and a fundamental domain for the moduli space arises from dividing out by G.

For the vacua we consider the fluxes are affected by G as well. SL(2, Z)τ acts in the

ordinary way: given an SL(2, Z) matrix

(

a b

c d

)

we have

τ → a τ + b

c τ + d
,

(

f

h

)

→
(

a b

c d

)(

f

h

)

. (3.9)

Under this transformation (f −τh) → (f−τh)/(cτ +d), hence solutions of (3.6) are carried

into other solutions, and Nflux (3.7) is preserved. The action of SL(2, Z) generates a Kähler

transformation on W (3.4) and K (3.2):

W → ΛW , K → K− log Λ − log Λ̄ , (3.10)

with in this case Λ = 1/(cτ + d).

4. Supersymmetric flux vacua as new attractors

The relation of flux vacua notation in the previous section to the notation used in section

§2 for New Attractors is as follows. The covariantly-holomorphic section is related to the

holomorphic one as

Π → e
K
2 Π(z) (4.1)

The fluxes f and h of section §2 are related to fluxes of section §3 as follows

f → Σ · f h → Σ · h (4.2)
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Finally the relation of the superpotential is

Z = e
K
2 W (4.3)

New Attractors (2.1) can now be rewritten in terms of flux vacua notations as

(

Σ · h
Σ · f

)

= eK
(

2Re(WΠ)

2Re(τ̄WΠ)

)∣

∣

∣

∣

DW=0

+ eK

(

2Re(eτ
0eψ

1 eψ

1
DψDτWDψΠ)

2Re(eτ
0eψ

1 eψ

1
τDψDτWDψΠ)

)∣

∣

∣

∣

∣

DW=0

(4.4)

where for simplicity we assume that we have only one complex structure modulus ψ (as

will be the case in examples in the remaining part of this note) and

eψ
1 eψ

1
= gψψ̄ =

1

∂ψ∂ψ̄K
eτ
0 = −(τ − τ̄) . (4.5)

5. Flux vacua as new attractors in a simple Calabi-Yau hypersurface

Consider a Calabi-Yau threefold defined as a hypersurface in a weighted projective space.

The Calabi-Yau threefold of interest is defined by the equation

4
∑

i=1

x6
i + 2x3

0 − 6ψ x0x1x2x3x4 = 0 xi ∈ WP 4
1,1,1,1,2 . (5.1)

On its moduli space it has Landau-Ginzburg, conifold and large complex structure points.

We will analyze the flux vacua at the Landau-Ginzburg point and in vicinity of the conifold

point. Both of these points are at a finite distance in moduli space.

Moduli space and periods of one parametric models were first studied in [24 – 26]. We

will use their results.

5.1 Flux vacua at Landau-Ginzburg point

In general the Landau-Ginzburg point is a very special point in the moduli space, where

the number of vacua with W = 0 and with discrete symmetries can be of the same order

as the total number of vacua, when nonzero [16].

Near the Landau-Ginzburg point ψ = 0 the periods admit expansion in a Picard-Fuchs

basis

wi(ψ) =
(2πi)3

6

∞
∑

n=1

exp(5πi
6 n)Γ(n

6 )

Γ(n)Γ(1 − n
6 )3Γ(1 − n

3 )

(

6αi

21/3

)n

ψn−1. (5.2)

This is valid for |ψ| < 1, where α is the 6th root of unity

α = exp

(

2πi

6

)

. (5.3)

In symplectic basis the periods then have the expansion

Π =









G1

G2

z1

z2









= m ·









w2

w1

w0

w5









= c0p0 + c1ψp1 + O(|ψ|2) (5.4)
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around the LG point ψ. Here c0, c1 are constants and the matrix of transformation from

the Picard-Fuchs to the symplectic basis is given by

m =









−1
3 −1

3
1
3

1
3

0 0 −1 0

−1 0 3 2

0 1 −1 0









(5.5)

and the following definitions are introduced

p0 =









α2

α

1

α5









p1 =









α4

α2

1

α4









. (5.6)

The monodromy group, Γ, of the complex structure moduli space has two generators: A,

which generates phase rotations ψ → αψ with α = exp(2πi/6) around the LG point at

ψ = 0, and T which corresponds to the logarithmic monodromy G2 → G2 + z2 around the

conifold singularity ψ = 1. By itself, A generates a Z6 ⊂ Γ subgroup, with an associated

fixed point at ψ = 0; T , on the other hand, is of infinite order.

F-flatness condition at ψ = 0 reduces to

DτW = (f − τ̄h) · p0 = 0 (5.7)

DψW = (f − τh) · p1 = 0. (5.8)

The monodromy matrix A generates rotations by a root of unity around ψ = 0:

AΠ(ψ) = αΠ(αψ) , (5.9)

and is explicitly given by

A =









1 −1 0 1

0 1 0 −1

−3 −3 1 3

−6 4 1 −3









. (5.10)

Vacua exist at the LG point as long as

τ = t1 + αt2 (5.11)

where t1 and t2 are rational [16].

The LG point is a fixed point for Z6 ⊂ Γ, so one may hope that this symmetry is

preserved in the low-energy theory. Additionally, the Z2 and Z3 points on the dilaton

moduli space are also potential sources of low-energy symmetry. Only Z3 is accessible

though.
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5.2 (0, 3) flux vacua

In addition to F-flatness these flux vacua satisfy the condition

DτDψW = 0 (5.12)

which results in the following constraint for fluxes which define the vacuum

f · p1 = h · p1 = 0 (5.13)

This is solved by the following

h = −h · A3 → h = (−3h3 + 3h4, h3, h3, h4) (5.14)

f = −f · A3 → f = (−3f3 + 3f4, f3, f3, f4). (5.15)

Hence in this case we have Z2 ⊂ Z6 preserved as a true symmetry (see [16] for details):

W (τ,−ψ) = W (τ, ψ). (5.16)

Let us now see if the New Attractor equations hold for these flux vacua. The second

term in New Attractors (4.4) vanishes and they become
(

Σ · h
Σ · f

)

= eK
(

2Re(WΠ)

2Re(τ̄WΠ)

)∣

∣

∣

∣ ψ = 0

τ =
f ·p†

0

h·p†
0

(5.17)

We checked this using computer algebra as we do most of the checks in this note.

5.3 (2, 1) flux vacua

In addition to F-flatness these vacua satisfy the condition W = 0 which results in the

following necessary and sufficient condition

f · p0 = h · p0 = 0. (5.18)

This is solved by the following choice of fluxes

h = h · A3 → h = (−3h3 + h4, 3h3, h3, h4). (5.19)

f = f · A3 → f = (−3f3 + f4, 3f3, f3, f4) (5.20)

Hence these vacua have a Z2 R-symmetry (see [16] for details)

W (τ,−ψ) = −W (τ, ψ) (5.21)

and it is easy to see that this ensures W (τ, ψ = 0) = 0. This is the R-symmetry “respon-

sible” for the vanishing of the vacuum superpotential.

In checking the New Attractor equations we see that the first term now vanishes and

they become
(

Σ · h
Σ · f

)

= eK
(

2Re(gψψ̄eτ
0DψDτWDψΠ)

2Re(gψψ̄eτ
0τDψDτWDψΠ)

)∣

∣

∣

∣ ψ = 0

τ = f ·p1

h·p1

(5.22)

where the metric at Landau-Ginzburg point on complex structure moduli space is given by

gψψ̄ =
|c1|2
3|c0|2

. (5.23)

Using computer algebra it is easy to check that these equations are indeed satisfied.
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5.4 (0, 3) + (2, 1) flux vacua

Generic flux vacua (with W and DτDψW not equal zero generically) are defined by the

condition

f = t1h − t2h · A2 (5.24)

for any integral h and rational t1, t2 chosen so that f is integral and the axio-dilaton is

given by

τ = t1 + αt2. (5.25)

In this case the New Attractors (4.4) should work as well , once again using computer

algebra, it is easy to check that they are satisfied.

5.5 Flux vacua at conifold region

Let us now study supersymmetric flux vacua in conifold region of the WP 4
1,1,1,1,2 model.

In a symplectic basis the periods in the vicinity of the conifold point ψ = 1 can be

given to first order by the following expressions (here x ≡ 1 − ψ and |x| ¿ 1)

G1(x) = (2πi)3[a0 + a1x + O(x2)],

G2(x) =
z2(x)

2πi
ln(x) + (2πi)3[b0 + b1x + O(x2)],

z1(x) = (2πi)3[c0 + c1x + O(x2)],

z2(x) = (2πi)3[d0 + d1x + O(x2)]. (5.26)

Where the constants can be approximated by the following numbers

a0 = 1.501i, c0 = −5.087 + 6.754i,

a1 = −0.914i, c1 = 4.261 − 4.112i,

b0 = 1.056, d0 = 0,

b1 = −0.344 − 0.827i, d1 = −1.654i. (5.27)

The Kähler potential for the complex structure modulus is given by

Kψ = − ln[µ0 + µ1x + µ̄1x̄ + µ2|x|2 ln |x|2 + µ3|x|2 + µ4x
2 + µ̄4x̄

2 + O(|x|3 ln |x|)], (5.28)

with the relevant constants µ0, µ1, µ2 and µ3 given by

µ0 = i(2π)6(a0c̄0 − c0ā0), µ1 = i(2π)6(c̄0a1 − c1ā0 − d1b̄0),

µ2 = (2π)5|d1|2, µ3 = i(2π)6(c̄1a1 − ā1c1 + d̄1b1 − b̄1d1). (5.29)

One finds the following expression for the Kähler metric

gxx̄ = −µ2

µ0
ln |x|2 +

( |µ1|2
µ2

0

− 2µ2 + µ3

µ0

)

+ O(|x| ln |x|). (5.30)

In computing Kähler covariantized derivatives with respect to ψ it is also useful to note

that

∂xKψ = −µ1

µ0
− µ2

µ0
x̄ ln |x|2 + O(x). (5.31)
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5.6 Flux vacua as new attractors at the conifold point

The approximate equations for supersymmetric flux vacua that are very close to conifold

point take the form [15]

DτW = 0 ⇒ τ =
f · Π†

h · Π†
=

f1ā0 + f2b̄0 + f3c̄0

h1ā0 + h2b̄0 + h3c̄0
+ O(|x| ln |x|); (5.32)

DψW = 0 ⇒ ln(x) = −2πi

d1

[

(f1 − τh1)(a1 − µ1

µ0
a0) + (f2 − τh2)(b1 − µ1

µ0
b0)

f2 − τh2
+

+
(f3 − τh3)(c1 − µ1

µ0
c0) + (f4 − τh4)d1

f2 − τh2

]

− 1. (5.33)

One can make Monte Carlo simulations of such vacua. This was done in [15] where

the attractive nature of conifold point was established. We will take one particular choice

of fluxes to illustrate that the New Attractors (4.4) work. For the choice of fluxes

f = {61, 10,−11,−15} h = {3, 4, 4, 11} (5.34)

and using (5.32), (5.33) , one finds a supersymmetric vacuum deep in the conifold region

with

ln(1 − ψ) = −7.29 − 0.71i τ = −0.42 + 1.90i (5.35)

One may check that the F-flatness conditions

DτW ≈ 0 DψW ≈ 0 (5.36)

hold with precision O(10−2) and New Attractors hold with precision O(10−3).

6. Area codes for flux vacua

A new phenomena that we observe in this note is that certain fluxes may give rise to

multiple minima within a finite distance on the moduli space. This suggests the existence

of area codes and basins of attraction for these flux vacua.

We give an illustration of these multiple basin attractors here. For simplicity let us

consider flux vacua with the Z3 symmetry on the dilaton moduli space being preserved in

the low-energy action. In order for fluxes to permit τ = α as a vacuum we must restrict

the Landau-Ginzburg solutions [16] to fluxes satisfying

f = −h · A2 . (6.1)

To be specific let us take the H(3) flux to be

h = {−72,−3, 13,−4} (6.2)

Note this supersymmetric flux vacuum with enhanced symmetry satisfies the New Attrac-

tors (4.4) of course.
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It turns out, using (5.32) and (5.33) , that this flux give rise to a vacuum deep in

conifold region with

τ = 0.37 + 1.11i ln(1 − ψ) = −18.47 − 0.37i (6.3)

Computer algebra confirms that the F-flatness conditions and the New Attractor equations

hold with precision O(10−3).

This means that for flux choice (6.2) there are at least two supersymmetric AdS flux

vacua, with cosmological constant V = −3eK|W |2 given by

VLG = −2080.5 Vconifold ' −2281.7 (6.4)

which are not the same but are close.

This suggests the possible existence of basins of attraction and domain walls in the

landscape domain walls between two flux vacua which arise for a fixed flux and both of

which are at interior points in moduli space.

7. Non-supersymmetric extremal black holes

In this section we switch gears and consider the non-supersymmetric extremal black holes

proposed in [20] and rediscovered and developed more recently in [21 – 23].

Let us consider the same WP 4
1,1,1,1,2 model and construct non-supersymmetric extremal

black hole attractors at the Landau-Ginzburg point of this model.

In N = 2 supersymmetric theory the effective black hole potential can be expressed

as [20, 21]

VBH = eK(|DW |2 + |W |2) (7.1)

in terms of a Kähler potential given by

K = − log(−iΠ† · Σ · Π) (7.2)

and a superpotential which reads as

W =

∫

M
F(3) ∧ Ω = f · Π (7.3)

where f is the F(3) magnetic and electric flux.

Non-supersymmetric black hole attractors are just critical points of effective black hole

potential [20]

∂iVBH = 0 (7.4)

and subject to attractors [21] if

Mij =
1

2
∂i∂jVBH > 0. (7.5)

In this case the resulting black hall entropy is just given by

SBH = πVBH (7.6)

at the minimum with a positive definite mass matrix.
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Let us now go back to our model with one complex structure modulus. It turns out

that this minimum of the effective black hole potential

Veff(ψ) = eK(Gψψ̄ |DψW | + |W |2) ∂ψVeff(ψ) = 0 (7.7)

happens to be at Landau-Ginzburg point for fluxes

f = (−3f3 + f4, 3f3, f3, f4). (7.8)

This is equivalent to f = f ·A3 in terms of Landau-Ginzburg monodromy matrix A defined

in (5.10).

The mass matrix for these fluxes is found to be

∂ψ∂ψVBH(ψ)|ψ=0 = 0 ∂ψ∂ψ̄VBH(ψ)|ψ=0 = 2Gψψ̄ |ψ=0 VBH|ψ=0 (7.9)

where the effective black hole potential at the attractor point is

VBH(0) =
2√
3
(3f2

3 + 3f3f4 + f2
4 ). (7.10)

This means that these critical points are indeed attractors for all possible fluxes (7.8).

Note also that for this case we have W = 0, though this is non-generic as we see from the

examples in [23].

7.1 New attractors for non-supersymetric extremal black holes

Let us finally check that the recently proposed New Attractor equations for non-supersym-

metric extremal black holes [12] holds. This equation is

f = 2eKIm(WΠ − GaāDaWDaΠ). (7.11)

In our simple case of a one dimensional moduli space (and our particula choice of fluxes)

these equations become

Σ · f = 2eKIm(WΠ − Gψψ̄DψWDψΠ) (7.12)

It is a matter of simple algebra to check that these equations are indeed satisfied for the

solutions above.

We finish our note with the remark that through the explicit examples in the sections

above we have illustrated phenomena which certainly deserve further attention.

8. Conclusion

In this note we have found multiple examples of supersymmetric flux vacua which satisfy

new supersymmetric attractor equations. We have also found examples of non-supersym-

metric black hole attractors which solve the corresponding non-supersymmetric New At-

tractor equations. In conclusion we want to make one observation concerning the flux

vacua.
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Though the existence of domain walls of various sorts in the landscape was already

known; e.g. the domain wall between the KKLT vacuum and infinity, or the domain walls

which jump the quantized RR and NS flux and are given by D and NS branes wrapping

3-cycles. In this note however we are giving the first signs of existence of domain wall

between two flux vacua which arise for a fixed flux and both of which are at interior points

in moduli space.

With this regard we should say that a first bottom-up pass at the ”measure problem”

for vacuum selection would clearly involve doing statistics of the sizes of basins of attraction

(in the metric on CY moduli space) for the various vacua which arise at a fixed flux.
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